SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Farmaceutiska vetenskaper) ;pers:(Lennernäs Hans);pers:(Augustijns Patrick)"

Search: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Farmaceutiska vetenskaper) > Lennernäs Hans > Augustijns Patrick

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Augustijns, Patrick, et al. (author)
  • Unraveling the behavior of oral drug products inside the human gastrointestinal tract using the aspiration technique : History, methodology and applications
  • 2020
  • In: European Journal of Pharmaceutical Sciences. - : ELSEVIER. - 0928-0987 .- 1879-0720. ; 155
  • Journal article (peer-reviewed)abstract
    • Fluid sampling from the gastrointestinal (GI) tract has been applied as a valuable tool to gain more insight into the fluids present in the human GI tract and to explore the dynamic interplay of drug release, dissolution, precipitation and absorption after drug product administration to healthy subjects. In the last twenty years, collaborative initiatives have led to a plethora of clinical aspiration studies that aimed to unravel the luminal drug behavior of an orally administered drug product. The obtained drug concentration-time profiles from different segments in the GI tract were a valuable source of information to optimize and/or validate predictive in vitro and in silico tools, frequently applied in the non-clinical stage of drug product development. Sampling techniques are presently not only being considered as a stand-alone technique but are also used in combination with other in vivo techniques (e.g., gastric motility recording, magnetic resonance imaging (MRI)). By doing so, various physiological variables can be mapped simultaneously and evaluated for their impact on luminal drug and formulation behavior. This comprehensive review aims to describe the history, challenges and opportunities of the aspiration technique with a specific focus on how this technique can unravel the luminal behavior of drug products inside the human GI tract by providing a summary of studies performed over the last 20 years. A section `Best practices' on how to perform the studies and how to treat the aspirated samples is described. In the conclusion, we focus on future perspectives concerning this technique.
  •  
2.
  • Carlert, Sara, 1977- (author)
  • Investigation and Prediction of Small Intestinal Precipitation of Poorly Soluble Drugs : a Study Involving in silico, in vitro and in vivo Assessment
  • 2012
  • Doctoral thesis (other academic/artistic)abstract
    • The main objectives of the present project were to increase the understanding of small intestinal precipitation of poorly soluble pharmaceutical drugs, investigate occurrence of crystalline small intestinal precipitation and effects of precipitation on absorption. The aim was to create and evaluate methods of predicting crystalline small intestinal drug precipitation using in vivo, in vitro and in silico models.In vivo small intestinal precipitation from highly supersaturated solutions of two weakly basic model drugs, AZD0865 and mebendazole, was investigated in humans and canine models. Potential precipitation of AZD0865 was investigated by examining dose dependent increases in human maximum plasma concentration and total exposure, which turned out to be dose linear over the range investigated, indicating no significant in vivo precipitation. The small intestinal precipitation of mebendazole was investigated from drug concentrations and amount of solid drug present in dog jejunum as well as through the bioavailability after direct duodenal administration in dogs. It was concluded that mebendazole small intestinal precipitation was limited, and that intestinal supersaturation was measurable for up to 90 minutes.In vitro precipitation methods utilizing simulated or real fasted gastric and intestinal fluids were developed in order to simulate the in vivo precipitation rate. The methods overpredicted in vivo precipitation when absorption of drug was not simulated. An in vitro-in silico approach was therefore developed, where the in vitro method was used for determining the interfacial tension (γ), necessary for describing crystallization in Classical Nucleation Theory (CNT). CNT was evaluated using a third model drug, bicalutamide, and could successfully describe different parts of the crystallization process of the drug. CNT was then integrated into an in silico absorption model. The in vivo precipitation results of AZD0865 and mebendazole were well predicted by the model, but only by allowing the fundamental constant γ to vary with concentration. Thus, the in vitro-in silico approach could be used for small intestinal precipitation prediction if the in vitro concentration closely matched in vivo small intestinal concentrations.
  •  
3.
  • Hens, Bart, et al. (author)
  • Leveraging Oral Drug Development to a Next Level : Impact of the IMI-Funded OrBiTo Project on Patient Healthcare
  • 2021
  • In: Frontiers in Medicine. - : Frontiers Media S.A.. - 2296-858X. ; 8
  • Research review (peer-reviewed)abstract
    • A thorough understanding of the behavior of drug formulations in the human gastrointestinal (GI) tract is essential when working in the field of oral drug development in a pharmaceutical company. For orally administered drug products, various GI processes, including disintegration of the drug formulation, drugrelease, dissolution, precipitation, degradation, dosage form transit and permeation, dictate absorption into the systemic circulation. These processes are not always fully captured in predictive in vitro and in silico tools, as commonly applied in the pre-clinical stage of formulation drug development. A collaborative initiative focused on the science of oral biopharmaceutics was established in 2012 between academic institutions and industrial companies to innovate, optimize and validate these in vitro and in silico biopharmaceutical tools. From that perspective, the predictive power of these models can be revised and, if necessary, optimized to improve the accuracy toward predictions of the in vivo performance of orally administered drug products in patients. The IMI/EFPIA-funded “Oral Bioavailability Tools (OrBiTo)” project aimed to improve our fundamental understanding of the GI absorption process. The gathered information was integrated into the development of new (or already existing) laboratory tests and computer-based methods in order to deliver more accurate predictions of drug product behavior in a real-life setting. These methods were validated with the use of industrial data. Crucially, the ultimate goal of the project was to set up a scientific framework (i.e., decision trees) to guide the use of these new tools in drug development. The project aimed to facilitate and accelerate the formulation development process and to significantly reduce the need for animal experiments in this area as well as for human clinical studies in the future. With respect to the positive outcome for patients, high-quality oral medicines will be developed where the required dose is well-calculated and consistently provides an optimal clinical effect. In a first step, this manuscript summarizes the setup of the project and how data were collected across the different work packages. In a second step, case studies of how this project contributed to improved knowledge of oral drug delivery which can be used to develop improved products for patients will be illustrated.
  •  
4.
  • O'Shea, Joseph P., et al. (author)
  • Best practices in current models mimicking drug permeability in the gastrointestinal tract - An UNGAP review
  • 2022
  • In: European Journal of Pharmaceutical Sciences. - : Elsevier. - 0928-0987 .- 1879-0720. ; 170
  • Research review (peer-reviewed)abstract
    • The absorption of orally administered drug products is a complex, dynamic process, dependant on a range of biopharmaceutical properties; notably the aqueous solubility of a molecule, stability within the gastrointestinal tract (GIT) and permeability. From a regulatory perspective, the concept of high intestinal permeability is intrinsically linked to the fraction of the oral dose absorbed. The relationship between permeability and the extent of absorption means that experimental models of permeability have regularly been used as a surrogate measure to estimate the fraction absorbed. Accurate assessment of a molecule's intestinal permeability is of critical importance during the pharmaceutical development process of oral drug products, and the current review provides a critique of in vivo, in vitro and ex vivo approaches. The usefulness of in silico models to predict drug permeability is also discussed and an overview of solvent systems used in permeability assessments is provided. Studies of drug absorption in humans are an indirect indicator of intestinal permeability, but both in vitro and ex vivo tools provide initial screening approaches and are important tools for assessment of permeability in drug development. Continued refinement of the accuracy of in silico approaches and their validation with human in vivo data will facilitate more efficient characterisation of permeability earlier in the drug development process and will provide useful inputs for integrated, end-to-end absorption modelling.
  •  
5.
  • Senekowitsch, Stefan, et al. (author)
  • Application of In Vivo Imaging Techniques and Diagnostic Tools in Oral Drug Delivery Research
  • 2022
  • In: Pharmaceutics. - : MDPI AG. - 1999-4923 .- 1999-4923. ; 14:4
  • Research review (peer-reviewed)abstract
    • Drug absorption following oral administration is determined by complex and dynamic interactions between gastrointestinal (GI) physiology, the drug, and its formulation. Since many of these interactions are not fully understood, the COST action on "Understanding Gastrointestinal Absorption-related Processes (UNGAP)" was initiated in 2017, with the aim to improve the current comprehension of intestinal drug absorption and foster future developments in this field. In this regard, in vivo techniques used for the characterization of human GI physiology and the intraluminal behavior of orally administered dosage forms in the GI tract are fundamental to gaining deeper mechanistic understanding of the interplay between human GI physiology and drug product performance. In this review, the potential applications, advantages, and limitations of the most important in vivo techniques relevant to oral biopharmaceutics are presented from the perspectives of different research fields.
  •  
6.
  • Sjögren, Erik, et al. (author)
  • In vivo methods for drug absorption - Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects
  • 2014
  • In: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 57, s. 99-151
  • Journal article (peer-reviewed)abstract
    • This review summarizes the current knowledge on anatomy and physiology of the human gastrointestinal tract in comparison with that of common laboratory animals (dog, pig, rat and mouse) with emphasis on in vivo methods for testing and prediction of oral dosage form performance. A wide range of factors and methods are considered in addition, such as imaging methods, perfusion models, models for predicting segmental/regional absorption, in vitro in vivo correlations as well as models to investigate the effects of excipients and the role of food on drug absorption. One goal of the authors was to clearly identify the gaps in today's knowledge in order to stimulate further work on refining the existing in vivo models and demonstrate their usefulness in drug formulation and product performance testing. (c) 2014 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view